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ABSTRACT

In this paper, we apply two theoretical turbulence models, DIA and the recent GISS
model, to study properties of a turbulent channel flow. Both models provide a turbulent
kinetic energy spectral function E(k) as the solution of a non—linear equation: the two
models employ the same source function but different closures. The source function is
characterized by a rate ns(k) which is derived from the complex eigenvalues of the
Orr—Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille t vpe.
The O-S equation is solved for a variety of Reynolds numbers cor:esponding to available
experimental data. A physical argument i3 presented whereby the central line velocity
characterizing the basic flow, UI(;, is not to be identified with the U, appearing in the
experimental Reynolds number. A renormalization is suggested which has the effect of
vielding growth rates of magnitude comparable to those calculated by Orszag and Patera
based on their study of a secondary instability. From the practical point of view. this
renormalization frees us from having to solve the rather time consuming equations
describing the secondary instability. This point is discussed further in XII. In the present
treatment. the shear plays only the role of a source of energy to feed the turbulence and not
the possible additional role of an interaction between the shear of the mean flow and the
eddy vorticity that would give rise to resonance effects when the shear is equal to or larger
than the eddy vorticities. The inclusion of this possible resonance phenomenon, which is
not expected to affect tne large eddy behavior and thus the bulk properties, is left for a
future study. The theoretical results are compared with two types of experimental data: a)
turbulence bulk properties, Table IV and b) properties that depend strongly on the
structure of the turbulence spectrum at low wave numbers (i.e., large eddies), Tables V' and
VL. The latter data are taken from recent experiments measuring the changes in the
propagation of an electromagnetic wave through a turbulent channel flow. The
fluctuations in the refractive index of the turbulent medium are thought to be due to
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pressure fluctuations whose spectral function II(k) is contributed mostly by the interaction

between the mean flow and the turbulent velocity. The spectrum [1(k) must be computed
as a function of the wave number k, the position in the channel X9, and the width of the
channel A. The only existing analytical expression for II(k), due to Kraichnan, cannot be
used in the present case because it applies to the case X9=0 and A=w, which corresponds to
the case of a flat plate, not a finite channel. A general expression for I1(k,x.,A) is derived
here for the first time and employed tc calculate the fraction of incoherent radiation
scattered out of a coherent beam. In Section XI, we treat anisotropy and show how to
extend the previous results to include an arbitrary degree of anisotropy in the sizes of the
eddies. We show that the theoretical one—dimensional spectra yield a better fit to the data
for a degree of ani-otropy (a = 4) that is within the range of experimental values. We also
extend the expression for IT(k,xy;A) to II(k,x,;A,a) and compute the pressure fluctuations
for different values of a. Similarly, we evaluate the fraction of electromagnetic energy
scattered by an anisotropic turbulent flow and find a good fit to the laboratory data for a

valueof ax 4 — 6.

Theoretical problems however remain which will require further study: among them.
lack of backscatter (i.e., the transfer of energy from large to small wavenumbers) in the
GISS model, possible resonance effects between the shear and eddy vorticity, behavior of
the one dimensional spectral function at low wavenumbers, and the role of the secondary

instability. These topics are now under investigation.




INTRODUCTION

-6

Experimental data on turbulent channel flow!™® can be used to test the validity of
theoretical descriptions of turbulence. The latter can be broadly divided into two

categories: numerical simulation of the Navier-Stokes equations and theoretical closure

models.

While direct numerical simulations7’8

have successfully 1eproduced several
experimental data, they are limited to low Reynolds numbers since the number of grid
points required increases according to the 9/4 power of the Reynolds number and the
number of time steps needed for an accurate simulation increases according to the 3/4
power, yielding a rate of increase of Reynolds number to tie third power. For high
Reynolds number flows, the required number of grid points rapidly outstrips presently

available computational facilities. To treat high Reynolds number turbulent flows. large

eddy simulations make use of (empirical) subgrid scale models.®

Theoretical closure models can be broadly divided into two categories: single—point
and two—point closure models. The most well-known among the former is the one
originally proposed by Hanjalic and Launder (HL),9 which proved successful in describing
several types of shear flows. The HL model provides three coupled differential equations
for the Reynolds stress tensor 7,,, the energy dissipation rate ¢, and the turbulent kinetic
energy K, defined as the integral over all wavenumbers k of the turbulent energy spectral
function E(k). The latter is known to satisfy the following equationm_m (Ref. 9, Eq. 1.4:
Ref. 10, Egs. 4.35 or 4.33; Ref. 12, Eq. 15.27).

.k k k
%J E(k)dk+sj E,z(k)dkmuj k?E(k)dk=—J T(k) dk . (1)
0 0 0 k
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where s is the shear, E, is the spectral energy function of the Reynolds stress tensor, and
T(k) is the non-linear transfer among eddies of different wavenumbers. Eq. (1) can easily
be rewritten to exhibit the energy dissipation rate, ¢, by extending the k integration to

infinity and then subtracting the result from (1).

The HL model proposes an equation for this quantity which must be solved
simultaneously with (1) and with the equation for ¢. As previously stated, the HL model
has proven very successful in the detailed description of several types of shear flows, its

main drawback being the presence of six parameters that the model cannot determine.

The HL model had actually been preceded by the work of Tchen!! who suggested a
physically interesting model based on the possibility of rescnance interactions when the
eddy vorticity is equal to or greater than the shear of the mean flow. The need for an
equation for E,, was bypassed. for the model suggested an expression for it in terms of E(k)
and T(k) themselves. Although the model introduces two free parameters, it proved
successful in predicting not only the existence of an inertial Kolomogoroff region bhut also
the existence of a k! range that was actually verified experimentally. Tchen's model is

physically attractive and it would be interesting to try and improve on it.

In the early seventics, Leslie12 was the first to consider in detail the possible
application of two—point closure models to turbulent channel flow. Upon realizing the
unmanageable complexity of the DIA equations for the general case of shear flow,13 Leslie
tried to develop & systematic program of simplifications for the two—point closure equations
by restricting the analysis to the case of anisotropic but homogeneous flow (i.e., with
constant shear) in the hope of deriving in a deductive, parameter free fashion, the empirical
one—point closure relations of Hanjalic and Launder.” By his own surmising, Leslie did not
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succeed in his attempt.

Since Leslie's work was not followed by other attempts to employ two—point closure
models to turbulent channel flow, one is left today with either the successful one—point HI.
closure model which, however, contains six free parameters to be determined from
experiments, with direct numerical simulations with their intrinsic Reviwolds number
limitations, or with a large eddy simulation which must rely on the use of a subgrid scale

model.

The model we are about to present contains no free rarameters, employs (two) closure
models and. within the goals it sets for itself, can be said to be relatively successful. The
models used in this paper contain features that are common to the HL model, to Leslie's
attempt, and to Tchen's physical approach. In common with the latter is the fact that our
work deals with only one equation. the one for the turbulent kinetic energy spectral
function E(k). but at the same time it differs from Tchen's work in that E\5(k) is not
written phenomenologically in terms of E(k) and T(k). Rather. it is considered in the same
spirit of the HL work. aiamely derived from an external relation. see IV. Our model has in
common with Leslie's approach the treatment of the non-linear transfer terms, but it
overcomes the difficulty that he had in treating anisotropy (caused by the mean flow
stretching the eddies in the streamwise direction) by adopting a less formal but physically
appealing approach originally proposed by Kraichnan. 2829 We first derive expressions for
all of the quantities of interest, i.e., the one~dimensional energy spectrum. the amplitude of
the pressure fluctuations, and the attenuation of a laser beam in the stretched physical
system where the wavenumbers are denoted by k. These functions depend on E(k-). the
turbulent energy spectral function in the anisotropic system. However, since present
turbulence models only allow us to calculate the energy cpectrum, E(k), in isotropic
systems. we have introduced an aspect ratio or anisotropy parameter. a. a measure of the
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stretching of the eddies in the streamwise direction, such that ki =kj/e, ki = k,. and k;
= k3. By transforming from the k” to the k system. we then perform the integrations in k
space. The final expressions will depend on the anisotropy parameter a which is not known
a priori but must be determined through comparison with experimental data. By
comparing predicted and experimental one—dimensional spectra, we found that the best fit
was for 4 < a < 8. The amplitude of the pressure fluctuations at the walls is most seucitive
to the value of a (since the flow tends toward isotropy at midchannel) and a vaiue of a in
the range 4 to 6 was found to best fit the measured values. In the calculation of Jie
attenuation of a laser beam propagating through a channel flow, we again found a best fit
to the data for a in the range of 4 to 6. The consistency of these results lends credence to

th> methodology employed.

As stated earlier, we shall adopt the DIA as well as the recent GISS model The
latter has been recently tested against several types of turbulence, convection. grid

turbulence, shear. etc. In all cases considered, the results were satisfactory.

Notation: while in the DIA model the spectral energy function is denoted by E(k). in

the GISS model use is made of the function F(k)= 2E(k).
II. THE GISS MODEL

The GISS model is based on a physical representation of the non-linear energy
transfer in a way that while reminiscent of the work of Heisenherg.15 generalizes it in two
important aspects. as described below. Assuming the turbulence is stationary, we begin by

writing Eq. (1) as




k @®
(k) = zuj K?E(k) dk +J T(k) dk ()
0 k
k
(k) = QJ [ns(k) + ukz] E(k) dk (3)
0

is the rate of energy input into the wavenumber interval [0,k], which is partly dissipated by
molecular viscosity and partly transferred by the non-linear term. T(k). The DIA and

GISS models differ in the way they describe the funciion T(k).

Equation (2) separates the action of the source, represented by ¢(k). from the action
of viscosity and the non-linearity. Clearly, the separation is not meant to imply that ¢(k)
does not depend on the same ingredients that enter into the right hand side of the equation.
it only helps in visualizing the physics of Eq. (1) more clearly. The problem then reduces
to the evaluation of the quantity ns(k). the rate at which energy is being fed into the
system. A discussion of how to compute this quantity will be given in Section IV. For the
time being, we shall only note that the structure of ns(k) must be such that it depends on

the source of energy for the turbulent flow, namely the shear itself. That this is indeed the

case. will be shown in Egs. (53)—(54).

We begin by writing the transfer term T(k) as the product of a turbulent viscosity

times a mean square vorticity, i.e.,

o

k
JkT(k)dkzut’(k)y(l\'). y(k) =lk2 F(k) dk . (4)




so that the equation describing the energy balance in a turbulent flow becomes

(k) = [v+ v, (k)] y(k). (5)
If one adopts the expressions
T }
Vt(k) = J [EHQ} dk . ¢(k) = ¢ = constant , (6)
k

Eq. (5) reduces to the well known Heisenberg model that successfully reproduces the

inertial subrange form of F(k) « k_5/3. when v, is greater than v.

The GISS model adopts the form of Egs. (4) and (5) but neither of Eqs. (6). It

extends both expressions in such a way that they reduce to (6) omly in the inertial
subrange. The generalization is carried out in two steps. First. the expression for ¢(k).

rather than being taken to be a constant independent of k, is written as
k
(k) =lF(k) (ny(K) + vk?) dk , (7)

where vk? cancels the negative viscosity effects included in ns(k): the latter represents the
rate at which energy is pumped into the system in the wavenumber interval between 0 and
k. It is expected that for sufficiently large k. the integrand vanishes since ng— -vk?.

Thereafter. ¢(k) remains constant. Then the Heisenberg approximation, ¢(k) = constant =

¢ is valid.
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The second generalization consists of writing the turbulent viscosity as

o )

ut(k)zj%dk, (
k

[0 2]

where nc(k) is a correlation time between eddies. to be determiped by a closure. Equations
(7) and (8) represent a formal generalization of the Heisenberg expressions. The essence of
the GISS model is contained in a new closure, i.e. an expression relating nc(k) to F(k) and

n (k). the latter being considered given, either from an independent calculation (see Section

IV) or self—consistemly.14

Differentiating Eq. (5, with respect to k and making use of Egs. (7) and (8), one

obtains

n,(k) +%= K2 (k) . (9)
C

The GISS model closure is represented by
2, (1) = .
k ut(k) = wnc(l\) , (10)

which, when inserted into Eq. (9), yields an expression for nc(k) in terms of ns(k) and v(k).

namely,
2m (k) = ny(k) + [n2(k) + 4oy (k)] . (11)

Substituting (11) into (9) and using (8), one obtains a non-linear differential ecuation for
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F(k). This is cquivalent to solving a ron-linear equation for the auxiliary function V(k)

defined as V(k) = y(k) + 'mg(k)/?, ie.,

d\’ k =2 10l K (12(1)

3m(K) = ng(k) + [n2(K) + 69V (k)] . (12h)

Since dy(k)/dk = k®F(k), the knowledge of V(k) yieids the spectral function. F(k). The
paramete, 7 is the only free parameter in the model and was found to be related to the

Kolmogoroff constant Ko by the expression

9 13
)= [m] . (13)

One can easily show that the Heisenberg model is indeed contained in the GISS
model. For eddies sufficiently removed (in k space) from the source, which acts primarily
at low wavenumbers, the time scale characterizing the source, ngl. is no longer the
dominant one. The eddy dynamics are governed primarily by the local break—up
mechanism characterized by a time scale given by the vorticity, so that when y% >>n..n,
x y*. ana Eq. (8) reduces to the Heisenberg form given by Eq. (6), at least for a power law
F(k). At the same time, far from the source, the function (k) saturates, e, e(k) = ¢ =
constant, Eq. (6). This shows that the GISS model encompasses the inertial subrange. On
the other hand, for eddies with sizes of the order of the dimensions of the system itself. one
may expect that the dominant time scale would be closer to that of the sonrce, i.e. ng >>
y*. D ~ N, and cleariy e(k) is not constant. Under these conditions. one cannot expect a
universal form for the energy spectral functicn. since F(k) now depends on the specific form

of the stirring mechanism.
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In conclusion, while the Heisenberg miode! vields a .niversai F(k), the GISS model
g y

yields an F(k) which is a universal function of ns(k).
iIil. THE DIA MODEL

Perhaps the most weil known of the presently available theories to describe fully
developed turbulence is Kraichnan's direct interaction approximationm (DIA) which in
turn has given rise to other theories which bear the same spirit. We shall not discuss here
the eddy damped quasi-normal Markovian «£DQNM) approximation, which is
phenomenological in nature, since the eddy correlation time scale (which within the DIA is
determined by solving the integral equation satisfied by the infinitesimal response function)
must be chosen using external inputs. A very complete description of EDQNM, its

successes and limitations in describing "universal" properties can be found in Ref. 17.

Since the DIA has been described in detail elsewhere,12 we shall present only the bhasic
equations for the turbulent energy spectral function. Although the DIA is a well
understood approximation to the non—linear transfer terms,18 it can be regarded as a fully
deterministic theory without free parameters. Since the DIA formalism has in the past
been applied primarily to describe those properties of turbulence that do not depend on the
specific nature of the source function, experimental data concerning bulk properties could
not be dealt with. To include them, the DIA was recently applied with good results to a
set of model equations with a source function appropriate to high Rayleigh number

convection. 19

Perhaps the main drawback in the application of the DIA formalism to
specific cases of interest has been the rather intimidating nature of the equations describing

the turbulent energy spectral function, E(k). Moreover, with the presence of :he

infinitesimal response function G(k), one must in fact solve two coupled integral equations
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for C(k) and G(k). These equations may be written19

A
[gi - “s(k)] Q(k,t-s) = 27 J J kqp b(k,q.p) dq dp

S
» [ j ds’ G(k,s-5")Q(a,t—s")Q(p,ts")

t
- [ as Glat—s)Q(pu—")Qlks-s")] (14)

0

and

A
(%~ 0] Gl ts) = -21 | | xap bika,p) da dp [ ds” Gla-s)Q(p.1=5)G(k s-57)

0N Sy

+ 6(t-s), (15)

where Q(k,t—=s) = < ui(k,t)ui(—k,s) >, u(k,t) is the Fourier component of the turbulent
velocity, the angular brackets denote a realization average, t and s are time variables, the
energy spectrum is given by E(k)=41k*Q(k,0), b(k,q,p) = (q/k)(xy+23) with x, y, and z
the cosines of the angles opposite k, q, and P, respectively, &x) is the Dirac delta function,
and the A over the wavenumber integrals indicates that the region of integration is
restricted to a subdomain in which k, q, and p form a triangle. Once the growth rate n (k)
is specified, Eqs. (14) and (15) can be solved for the energy spectrum and the infinitesimal

response function.
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IV. THE RATE ng(k)

Neither the DIA nor the GISS model can be expected to fix the functional form of
ns(k) which must be provided by considerations other than the ones that led to the
equations for the kinetic energy spectral function F(k). Prescribing an ns(k) is physically

equivalent to prescribing an equation or a formula for the energy rate ¢(k) since

k

e(k)=2 JO

(ng(k) +vk?) E(K) dk , (2)

o0} [+ 0}
€= e(w) = 2 J (n(K)+2k?) E(k) dk = 2v J K2E(k) dk .
0 0
Ou: model can thus be considered a two equation model, one for the kinetic energy K.
©
K = J.E(k) dk , (16)
0

and the second equation for e(k). For a successful application of our model, the
identification of the physically correct function ns(k) is clearly of critical importance. To

that end, let us first discuss its physical meaning. From Eq. (9), we derive that
N = 12y, (1) — A
ns(k) =k Vt(l‘) nd(l\)
k

ny(k) = ﬂlﬂl K2E(K) dk , (9)
C
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i.e., the rate ng is the difference between two rates: the rate k"’ut(k) at which energy. under

the action of the non—linear interactions, cascades to all wavenumbers larger than the une
considered (in fact, ut(k) is an integral from k to infinity), minus the rate at which energy
is injected at k from all wavenumbers less than the one considered (since the the vorticity

y(k) is an integral from 0 to k).

Since ng represents a difference of rates characterizing the fully developed turbulent
flow, i.e., long after the transition from the laminar state has occurred, it cannot a priori be
identified with the instability function nls‘—T that characterized the transition between
laminarity (L) and turbulence (T), even though the processes they represent are physically
equivalent. To derive n'g_T, one has a well defined mathematical formalism, the stability
theory. To derive ns(k) or, equivalently, ¢(k), one would have to construct another
equation thus making the mode! much more complex. We have already shown14 that
physical arguments can be very helpful. Some general considerations are in order. First. it
is known experimentally that, for example, in thermal convection the large scale structures
that one observes at the transition do persist in the turbulent phase, i.e., their structure
survives the strongly diffusive and shearing action of a turbulent flow. This result is
perhaps not unexpected since the large scale structures have the longest lifetimes of all the
eddies and also because their structure is affected primarily by the source rather than by
the non-linear transfer interactions. Stated differently, since the largest eddies cannot
originate from even larger ones, their sole source of growth is the source itself. Second.
from a mathematical point of view it would clearly be greatly advantageous if one could
employ, even if partially, the well established mathematical framework of stability theory
to gain information about the form of the function ns(k). Here we want to make a clear
distinction between the shape of the function ns(k) and its amplitude. We shall propose.
and try to justify, that the former can be arrived at by the use of the Orr—Sommerfeld
equation, while the latter can be arrived at only by providing a way to account for the
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presence of a turbulent flow. The latter is in fact likely to renormalize in a significant way
the amplitudes of the parameters characterizing the laminar regime. This in turn
translates into a renormalization of the O—S equation itself. The success of the calculations
presented in this paper will be seen to depend to a large extent on the proper
implementation of this renormalization procedure. Since the latter depends on the specific
problem at hand, it cannot be formulated in a universal fashion. Each physical problem
brings in its own characteristic features. From the point of view of trying to understand a
complex phenomenon like turbulence, we consider this to be an advantage, for the method
requires an understanding of the renormalization that the most prominent features of the
laminar flow have undergone. The use of an 0-S type of equation to determine the
functional form of the rate ng is proposed here because such a function has features of
almost universal character that are bound to be sufficiently well described by such an
approach. First, consider the shape of ns(k). For wavenumbers less than k, = 1/L, where
L is the geometrical dimension of the system under consideration, there cannot be any
forcing and so ng must be less than or equal to zero. On the other hand, for large values of
k, i.e., when one deals with small eddies, the dominant mechanism is kinematic viscosity
which contributes a factor —k?, i.e., the function ng must become negative at some large
value of k. In Ref. 14 it was shown that the GISS model requires that for large k, ng ~ -vk®
quite independently of its behavior at low wavenumber, i.e., of the specific mechanism that
feeds energy into the turbulent regime. One may therefore conclude that the general shape
of this function must be of the form shown in Fig. (1). In our experience with different
types of turbulence, i.e., grid turbulence, thermal convection, and shear, we have indeed
verified that the physical ns(k) has the form of Fig. (1). For example, in the case of grid
turbulence where both the kinetic energy spectral function E(k) and the non—linear transfer

term T(k) have been measured experimentally, one can derive ns(k) directly from the data

since from Eqs. (2) and (3) it follows that
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2ns(1\-)=-'§8§}. (17)

The functions E(k) and T(k) are presented in Figs. (14) and (16) of Ref. 14. As one can

see, the ratio does indeed have the shape of Fig. (1).

A second, parallel argument as to the validity of an O-S type equation as a guide to
the functional form of ng can be seen by using a procedure first suggested by SyngeQO

whereby the O-S equationm_23

is formally rewritten so as to exhibit the instability
function or growth rate ng (we shall omit the superscripts L-T). The result is (see Eq. 53
below)

n (k) = Ary,(k) — vB(k) , (18)

which shows, as expected on physical grounds, that ng is composed of two terms: a source
term, proportional to the shear 7,,, and a sink proportional to the viscosity ». The O-S
equation further predicts that the shear peaks near the walls (see Fig. 4.21 of Ref. 23), thus
implying that in that region energy is extracted from the mean flow and fed into
turbulence. Experimentally, it is known (see Fig. 5.5 of Ref. 24) that the main source of
energy production, i.e., of e(k), occurs precisely in that region. Thus, the 0-S equation
predicts correctly the physically important feature of a region of instability. There, the
main physical process is intrinsically the same as the one that characterized the transition
from laminarity to turbulence. That feature has thus survived even in the presence of
turbulence, which one may hope can be accounted for by a process of renormalization for

which we shall propose two methods and show that they yield very similar results.

We choose a coordinate system in which the mean flow is in the x—direction with one
wall of the channel at y = -D and the other at y = D. Consider the well-known laminar
Poiseuille profile,”* with g= y/D,
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Uiy) = 35 (32 =g (19)

where Ap/{ is the pressure drop along the channel of width 2D (we have taken unit
density). In terms of the bulk velocity Um defined as the integral across the channel of

U(y) divided by the width of the channel, 2D, i.e.,

U D
_D2Ap _-m
Um_3u ’ Rm" v (20)
Eq. (19) becomes, where L stands for linear,
Uy =Ug-g0, uh=3u_, (21)

and U[(; is the value of U(y) at midchannel, y=0.

As one can see, in the linear regime the pressure drop is proportional to Um. This is
no longer valid in the turbulent regime, where the relation is quadratic rather than linear.
We shall propose to incorporate this physical property into (19) as a way to renormalize for

the presence of turbulence. In order to do so, it is convenient to introduce the friction

coefficient A defined as25

~—

so that Eq. (19) becomes
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U(y)=1—U§1(1—;}’). (23)

While this new form does not introduce any new physics at the laminar level, being merely
a rewriting in terms of different variables, it does allow us to incorporate turbulence effects

if an additional relation for the quantity A is introduced, for example the one proposed by
25 .
i.

Blasius, e.,
_p—l/4 .
3N = Rm . (24)
Eq. (23) can then be written as

Uy)=Us(1-4), Ub=165AR2, (25)

where U% is the renormalized midchannel velocity. Had we assumed that Eq. (21) were

valid in the turbulent regime, we would have
L _3v .
Up = ) Rm , (26)

which shows that the renormalization procedure from Eq. (21) to Eq. (25) is equivalent to
taking
L R_A L o
IJo"U =§ernU0. (21)

It remains to relate Rm to the experimental Rexp’

exp




T

where U, is the measured center line (i.e., midchannel) velocity. The relationship bLetween

‘o, 4,25
Rm and Rexp is given by

4

D
=253R_, R_=Z12, (29)

Rexp -Rpy

where the ratio Rexp/Rr can be expressed alternatively as 3,4.25 (k=0.41, B=5.1)

%ln R_+B, 9.268R0:0% 954351073

exp Rr' (30)

A second approach for renormalizing the laminar profile can be devised by considering that
the experimentally measured mean velocity field, U(y), does indeed retain some vestiges of
the laminar profile in the region near the walls where the energy is being produced. This

can be seen by recalling the experimental form of U( y) as given for example in Ref. 25. i.e..
U(y) = U_R_(1-]| ¢]) R (1-|g|) <10 (31a)

Uy) =V, BimnR -lgh+51]  R0-1g)> 10, (31b)

and Fig. {5.5) of Ref. 24 which shows that the maximum production occurs at the point

where the linear regime changes to the logarithmic one. To renormalize the profile (19), we

must eliminate the pressure gradient in terms of some other physical characteristic of the

turbulent regime. We shall proceed as follows. Since both the profile (19) and the y

Co
o e mi
experimental one given by (31) are linear in the region where energy is being produced

most efficiently, we shall require that the slope of the two functions be the same as y goes
to -D so as to assure that the two are identical in that region. This implies that Ap/f =

U?/D , which in turn implies that
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R. TR. V
U(y):UO(l—}f'), L(,:mR?T.
In this case we note that the reaormalization for UI(; is given by

R?
L R v L 29\

In Table I, we present some numerical results that show how the two renormalizations. Eq.
(27) and (33) yield similar results (r,= Rr“;/“/?? , Ty= Ri/BRm). Considering the
empirical nature of some of the relations employed in the previous derivation. the

agreement of the results calculated using the two methods may be considered quite good.

It is probably not a coincidence that for Rexp=104, vie get a renormalization factor
that is very close to the one first obtained by Reynolds and Tiederman=0 more than twenty
vears ago and recently reconﬁrmed.27 Both studies point out that the use of the
experimental form of Uexp(y’Rexp) in the O-§ equation yields stable solutions. i.e., n <0
ifit is assumed that the Reynolds number appearing explicitly in the O-S equation, RO—S’
R On the

which is in effect a viscosity, is to be the same as the R entering U

exp exp(y’ exp)‘
other hand, if RO—S is left as a free parameter, unstable solutions (ns>0) can be obtained if

Rg_g~(10-15) R (34)

exp ’

It is as if the effect of turbulence is equivalent to a decrease of the molecular viscosity. At
first this may sound incorrect for we know that when dealing with the mean flow equations.

the molecular viscosity is increased by the effect of turbulence and, by extrapolation, one

21




might expect that the same would be true when considering not the equation for the m: ..

flow but for the turbulent flow itself. The only phenomenon that comes to ni,nd that could

play the role of an internal source of energy. thus a lowering of the viscosity, is backscatter.

a mechanism whereby the energy in the high wavenumber regions does not cascade 1, till |

higher wavenumbers (in the direction of the increasing importance of viscosity) hut s

scattered back to lower wavenambers, thus in effect playing against viscosity.

In conclusion, the rate n, entering in (3) is not the rate that characterizes the
transition from laminarity to turbulence. Rather, it represents the rate at which energy is
pumped into turbulence in such a wa; as .o satisfy (9), which represents the balance
between the rate at which such an energy is put into the system and the non-linear terms.
kzut, that either transfer it to higher wavenumbers or feed the same wavenumber interval
witn energy from lower wavenumbers, y(k)n;l(k). The quantity ng represents an
instability. but one in the presence of turbulence. In the case of channel flow. a region can
be isolated near the walls where there is such an instability in the sense that the energy is
being extracted from the mean flow and given to the turbulence. In that region, the
velocity profile is linear. We have tried to extract information about the rate at which
such energy is transferred from one type of flow to tie other by using the O-S equation in
which, however, the strength of the mean flow was adjusted to match the experimental one.
In that sense, the O-S equation must be viewed more as a phenomenological tool rather
than the exact equation that it really is when one deals with the very different problem of

the transition between laminarity and turbulence.

There are, however, two other ways of looking at the rate ng. One could renounce any
attempt at deriving n, from a mathematical equation, but rather consider it as a

phenomenological function of the type




ng = ns(k,a,b) , (35}

where the analytical form can be taken to match Fig. 1, and where the parameters a and b
can be fixed by demanding that the total kinetic energy K and the rate ¢ derived from the
turbulence model match the experimental values. By adopting this procedure, one
transforms the model into one that, rather than predicting the turbulent quantitie.
becomes a tool to assess the correctness of the non-linear transfer terms, i.e., the validity of
the adopted closure model. This method was successfully adopted in Ref. 14 in the case of
grid turbulence, where the predicted transfer term T(k) was found to compare rather well

with the measured value. (See Fig. 16 of Ref. 14.)

Another possible way of using the present model of turbulence is by way of inverting
the model and consider tne basic equations (9)—(11) not as a tool to derive the spectral
function F(k), aind thus the turbulent quantities, but rather as an equation for n itself. In
fact using the experimentally measured one—dimensional spectrum E,(k), one can construct

the three dimensional E(k), i.e.,
2E(k) = k? SEYk) _ | dE, (k

the turbulent viscosity b‘t(k)

(k) = [27T£|(‘-l§ldk]#, (37)
k

and finally the rate 'mc(k)=k'~’ut(k). Inserting these relations into (9) yields for n, the

expression




, (33)

crd 2K, (k) = 1,(k)
| k13 (k)

where

I,(k) = E k"‘-[l— lk ‘i%@] J—ﬁidk (39a)
= ey ] ol 4]

k
+15 J K2E, (k) dk | (20h)
k

0
whici can be easily computed once E (k) is known experimentally. This procedure vields
vaiuable information on the rate at which energy is being drzined from the mean flow into
turbulence. At the same time, the k dependence of ng would help in identifying, or at least
narrowing down, the possivle types of instanilites that might be candidates. Because of
the integration from k to infinity in (39}, it is clear that a successful retrieval of ng from
the experimental data can be carried out only when E,(k) is known over a large

wavenumber interval.
V. SOLUTION OF THE 0% S VUMMERFELD > SOUATION

We now proceed to show now the zoovh ate n can be compu.ed from the solution of

3N

the well known Orr=Somme:f. iu equation, Y™

wi0se erization is briefly sketched below.




mostly to firm up the notation and units employed.

We begin with the Navier-Stokes equations for the total velocity v and write the

linearized equations for u;, where as before V= Ui+ u;. Separating the other variables into

mean and fluctuating parts, the latter being indicated by a prime. we obtain -with U, =

6,V 2
gltl-ﬁ-vg%:—‘l—)dx' + W2 (40)
g%=—%§$—'+uv?v (41)
%%:—%dzl-+ Wiw (42)

where u, v. and w are the x, y, and z components, respectively, of the fluctuating velocity
and where d/dt = 9/0t + U d/dx. In deriving the above equations, the mean flow
equations in the linearized limit were also used to eliminate the average pressure. The

average density is denoted by p. Finally, the incompressibility condition is given by
Qo g"y + . (43)

Differentiate Eq. (40) with respect to x and Eq. (41) wiih respect to z, add the resulting
equations and use Eq. (43) to obtain an equation containing only the velocity v.
Differentiate this result with respect to y. Next, operate with &/dx*+6%/ 32 on Eq. (42).

Using the resulting two equations to eliminate the pressure term, we detive (** = d? dy?)
g :

[gﬁ"’ -U ’(y)-g;] v(x,y.z) = Wiv(x,y,2) . (43)
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Now assume that v has the form
v(x,y,z) = v(y) exp [i(kxx + koz — kyct)] . (43)
With the notation
k2= k2 4 k2, (46)
Eq. (44) becomes the well known Orr—Sommerfeld equa.tion,20_23

#-{g - 2050 = (-0 [ 42 vt - U (ot (47)

X IS
It is convenient to write this equation in terms of dimensionless quantities. Measuring
lengths in terms of the charnel half-width, D, and velocities in terms of the laminar
centerline mean velocity, Ug, we introduce the following dimensionless variables:
~ -L L
a= kxD, a=k D, ¢g=y/D, #=U/U;, e=c/U;. (48)
Eq. (47) then becomes

R (97BN = (U5 - (D2 - -Ulgvig, )

where @ = d/d}« The mean flow %4 at this point is still arbitrary. For a Poisejulle
flow, Uy = 1—}? is used and the boundary conditions v = dv/dg=0 are imposed at

#=# 1. If we further define l.’\L by aR = Z'I.{L, we obtain
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- R .k
R = —-L—-x—%= RLCOS é, (50)

L .2 2
(ky + k)

then the solution of Eq. (49) yields for a given f{Lthe complex eigenvalue ¢ as a function of
& Actually, for a given @, there is a large number of discrete complex eigenvalues ¢.
However, only one of the ¢'s has a positive imaginary part for some range of & which leads
to growth of the instability (see Eq. 45). Defining the growth rate ng = kxlm( ¢) (where Im

stands for the imaginary part of the enclosed function), the solution of Eq. (49) yields

UL
n = D—O alm(c)cos ¢ vs. @, (51)

for a given value of R. One can easily see that the maximum value of ng (the most
dangerous mode) corresponds to taking cos ¢ = 1, i.e., k, =0. To compare our results
with experimental data, we need to change the velocity normalization from the undisturbed
centerline mean velocity, UE, to the experimental centerline mean velocity, U,. This is

done by multiplying Eq. (51) by U(,/UL = Rexp/RL' Hence, the desired growth rate is

n . _U
Hf VS. I\LD, where n, _59, (52)

for different values of R, or, equivalently, of R .= U,D/v.
ex
VI. DETERMINATION OF k;

Equation (52) is not yet the final result, for it gives ng as a function of kL. However,
since homogeneity has been assumed in the application of the DIA and in the construction

of the GISS model, they require the knowledge of the growth rate as a function of the total
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wavenumber, k. Channel flow is inhomogeneous in the direction perpendicular to the

channel walls (the y—direction) so that an application of the model equations requires the
construction of a wavenumber in the y—direction. i.e., ky = ky(kl). The application of a
model which assumes homogeneity to a manifesily inhomogeneous flow may be criticized
on first principles, yet we have learned from Leslie's work!2 that the problem is
analytically a very difficult one and trade—offs must be made to simplify it in order to
make it solvable. We have kept as much as possible of the essential physics in the model
intact, consistent with the necessity of keeping the problem solvable. One of these
trade—offs is our inability to describe the variation in the details of the flow in the
y—direction. All of our calculated bulk properties represent an average of these properties
over the inhomogeneous direction. We therefore proceed to find a suitable relationship
between kv and k;' Following the original work of Synge,20 we multiply the O-S equation
(47) from'the left by v‘ and integrate the result over y from =D to +D. Separating the

real and imaginary parts, one obtains for the growth rate, ng = kxIm(c). the expression

k, Im(Q) I3+ QkEI';’ + kilg

%=1 22 0 12 4 p2r2 ‘ (53)
12 + k213 12+ K213
where
1 D * x *« x
Im(Q) = -} DU'[kx(uv Fuv) k(w4 w)] dy (54)
and
D n ;o
& =J dvlgy. (53)
-D 'dy
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In deriving Eq. (54), we have extended Eq. (45) to u and w and have used Eq. (43) in the
form dv/dy = —i(kxu + kzw).

Equations (53)—(53) have a simple physical interpretation. The first term is a

. "production term", since it provides the interaction between the shear s = U(y) in the
mean flow and the Reynolds stress tensor: it gives a positive contribution to ng, see Eq. (1).
The second term is proportional to the viscosity, v, and is always negative. It must clearly
dominate at very large wavenumbers where the only remaining physical mechanism is
kinematic viscosity. As we know, the latter enters the Navier-Stokes equations in the form

~vk% On that basis, we shall therefore identify the coefficient of v with k2, i.e.,

12 +2k212 + k*I2
?= PEErvra (56)
I + k%13

2 — 12 11
k ky+k

which, after some rearrangements, yields the desired result

2 1212
o B+

¥ B+ k3

which we shall use to generate the wavenumber ky from the solutions of the 0-S equation.

For the fastest growing mode (cos ¢ = 1), (57) becomes

1
J(u*g 2y + v*g'-’v) dy
-1

2
ky t % *
J(uu+vv)d;
-1




This result is intuitively appealing since k; is found to be the average of the operator

d?/dy? over the flow in the y—direction.
VIL THE RESULTS FOR ny(k) AND k,

We have solved the O-S equation (49) for four values of Rexp: 1.23, 2.86, 3.08. and 5
(x 104). The first three values correspond to the experimental values of Laufer® and
Hussain and Reynolds.4 In Table II, we present the values of ns(k) in units of n., Eq. (52).
as a function of the dimensionless wavenumber kD and in Table III we give the values of k.

VS, k;' In Fig.(2), we plot ns/n,. vs. kD for different values of the Reynolds number.
VIII. SOLUTIONS OF THE TURBULENCE EQUATIONS

The function ns(k) was used to solve both the DIA and the GISS models, Egs. (12)
and (14)—(15). In each case, we computed several quantities of interest that we discuss

below.
1) Turbulent energy spectral function. F(k). In Fig. (3) we plot

F(k)/Fx vs. kD, Fa= UJD = (#/D) RZ, ), (59)

calculated using the GISS model. In Fig. (4), we compare the GISS and DIA results.
2)  The energy ¢(k). In Fig. (5) we plot the quantity

¢(k)/ex vs. kD, e = U3/D = (44/D%) Rgxp‘ (60)

where ¢(k) is defined in (5) and (7). (The physical units of ¢ are erg g_1 sec_l.)
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3)  The turbulent viscosity, ”t(k)‘ In Fig. (6) we plot
Vt(k) fve vs. kKD, ve=UD=v Rexp , (61)
where ut(k) is the turbulent viscosity defined in (8). The largest value of the turbulent

viscosity is attained at k=k,, where k, is the smallest allowed wavenumber. Taking the

limit k-k, in Eq. (5), we obtain

(62)

4) One dimensional spectra. Both Laufer! and 'lussain and Reynolds4 present their
experimental results in terms of the onc dimensional spectral energy function defined in

terms of the three dimensional F(k) as follows (see Ref. 10, E <. 3.72, 3.48, 3.47)
E,(k,) = %Jm K~V F(k) (1- k2/K?) dk . (63)
k;

We have computed E,(k,) for the case corresponding to the experimental condition in the

Hussain and Reynolds paper, i.e., Rex = 28600, UO = 1350 cm sec—l, D = 3.18 cm. The

Y
results are presented in Fig. (7).

On the other hand, Laufer? presents his experimental data in terms of the function
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where 2m = k,U,;. The comparison between Laufer's measured spectrum (Re\p= 30800.

U o= 128 cm sec_l, D = 6.35 cm ) and the theoretical results is presented in F ig. (8).

5)  Turbulent velocities and scales of turbulence. Laufer1 and Hussain and Reynolds4

also provide experimental data for other quantities of interest, namely

a) turbulent energy,

<u2>=J®F(k) dk , (65)
0
b) turbulent velocity,
2.4 I 204 _ [<u®>)?
<u > =<uy> = <u,>* = [-T] . (66)
c) Taylor microscale /\x,
-1
Af{:JmEl(kl) dk, [rkf El(k,‘)dkl] : (67)
0 0
d) turbulence macroscale, Ax,
T -1
A, =ZE0) U:E(k) ak] , (68)
e) Kolmogoroff scale, los
ly= (A7 (69)
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L i, : . .
In Table IV, we present <u®> in units of U2, <u)°~(>2 in units of Uy, v=v,(ky) in

units of UyD, ¢ in units of U3/D, and A, A,» and |, in units of D. Experimental data are

included when available.
IX. PRESSURE FLUCTUATIONS IN A TURBULENT CHANNEL FLOW

We begin by considering that in an incompressible fluid, the pressure p(x) is given by

the solution of the Poisson's equation

Vp(x) = = p—fe—d (70)

where v(x) is the total velocity, p is the constant density, and the summation convention
has been employed. If, as usual, one splits v; into a fluctuating part u; and a mean field (’i.
the right hand side of (70) is seen to contain three contributions: a term in uju;, one in the
form uin, and one in Uin. Following I\’raichnan,28’29 we shall assume that the cross
term is much smaller than the other two so that from the solution of (70), one can

construct the fluctuating pressure, i.e.,

2
<> - J 0% (M _y(k) + 11, (k)] = J &k (k) | (71)

where T-T indicates the contribution arising from the turbulence—turbulence interaction

and T-M indicates the one arising from the interaction between the turbulence and the

mean flow. It is a known fact, which we have verified numerically, that




The expression for IIT_T was first evaluated by Batchelor.30 The result is

4
4 T _g(k) = [[ B )B(kok) 00 k- sinaa (73)
The expression for HT_M is much more difficult to compute. To treat the physical problem

under consideration, we need an expression that depends not only on k but also on the

coordinate variable across the channel of finite width A, i.e.

HT_M(k) - IIT_M(k,xQ;A) . (74)
The only expression for HT_M available in the literature is one due to Kraichnan2) (his Eq.
5.20), which yields the pressure at the lower boundary of 2 semi—infinite medium, (a flat

plate) i.e.,

HT_M(k,O;oo) . (

=1
(1]

Since we plan to study the propagation of an electromagnetic beam in a channel flow,
Kraichan's expression is not applicable to our case. We shall therefore derive the

expression for IT,_, (kx,) = L (5.%54).
Since in the case of a channel flow, two directions, say X; and x5, in the plane of the

mean flow can be considered to be homogeneous, one can perform a Fourier transform of

(70) on the variables x,, x5, and w. Eq. (70) then becomes
M—’é&gﬁiﬂ - K2p(Xp.mw) = = T(xy, k) (76)
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where #? = k? + k2, and

p(xy,Kw) = (27r)'_3/2 J- p(x,t)e_i(k1x1+k3x3—“}t)dxldx3dt . (77)

Eq. (76) is a second order, inhomogeneous differential equation whose solution can be

written as
X2 X2
25p(Xq,K,w) =J dx; e‘"(xfx?)T(xé,n,w) —J: dx; e'{(’(?-x?)T(xé,n,u) . (18)
a

The two constants of integration a and b must be determined by imposing the boundary

conditions

=0, (79)

d
p(xy.5w) =
ax_? 2 Xy=0,A

since the fiuid is bounded by two walls at x, = 0 and x, = A = 2D. The final result is
A

Xy
P(Xy.Kw) = {[ dx; g,(x9,x3;K)T(x3) —l dx; g,(x,x3:K)T(x3) , (80)

where, for the sake of simplicity, we have explicitly written only the x, dependence of T.

i.e., T(xp) = T(xy,kw), and where we have defined two function g, and g, as

Kg(Xq,X5:K) = sinh K(xy=x3) (81)
Kgy(Xg,X4iK) = %ﬁ%ﬂ—% cosh k(A-x3) . (82)
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By taking the limit A - » and X, = 0, (80) reduces to Eq. (3.9) of I\’raichnan.29 (In the

case x,=0 and nonzero A, Eq. (80) does not reduce to Eq. 3.11 of Kraichnanz9 since the
latter is missing a factor of 2 in front of the second term.) Eq. (80) is the basic ingredient
of our calculations since it gives the value of the fluctuating pressure at any given point in

a channel of full width A=2D. From (80) we obtain, with a slight change of notation,

A

A
Dy )2 = | dx l Ay Bl Xm)gy Xy yi8)<T (M) T(y.10)>
0

X9

-2 dxz[ dy g,(xz,y;n)gz(xQ,x;x)<T*(x,x,w)T(y,rc,w)>

OQﬁD

X9
*
+ J dx ]&dy 81(X0,XiK)g (%, ¥5K)<T (%,8w)T(y,kw)> , (83)
00

where the star denotes complex conjugation and the angular brackets denote an ensemble

average.

As is well known, the largest contribution to T(x,) comes from the interaction of the

turbulent field with the mean flow, i.e.

T(xt) = 2ps(x,) 92

= (84)

where the shear s(x,) is given by
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S(x2)=——§;§(—“U ’2‘ (85)

so that
<T(x.t)T(x",t")> = S(xQ,xé,xl—xi,xs—xé,t-—t')
— —4 2 4 a r/ t '\6
- p S(XQ)S(X‘Z) 3;'_% R?Q(xf_)vhngIa(s, ) ] (b )

where it has been explicitly indicated that in the directions X, and x5 the fluid is
homogeneous, Ry, is the two point velocity correlation function, ¢, = xi — x4, and
(3 = x3 — x3. Taking now

Roa(%2.%5,61,¢50t) = (2n)_3/2Jd2xdw el Cat) Rgy(x5.x5,k,w) (87)

and using an analogous expansion for S, we have

[0 ]
o

S(xp.X3,Kw) = 4% 5(x,)s(x3) K7 Rgg(Xp0X5.Kw) . (

x v
The relation between <T (x,k,w)T(y,kw)> in (83) and the quantity S(x,). X9, K, i

<T*(x,n,w)T(y,n,w)> = (2;r)_3/2 S(x9,x3,8w). Using the reality of Ryo(x,t), we write

* [«
Ryp(%9,x5,8w) = Q—E— :Z cos kgn)(xrxé) Ro,(k,w) , (89)
n=-—w

where kgn) =2m/A. Egs. (86)—(89) are substituted in (83) and the result is integrated

over all w. Using the relations
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(91

where E(k) is the velocity spectrum for homogeneous turbulence, and where

<Pxy)> = [ 1p(ig ko) |2 dPndes. (92)

we obtain. after a series of lengthy integrations over the variables x and y in (83), the final

result

SP_'lT)_pm > _ J % T(k.x,) , (93)

where

'S o(i,-x{m)) Efk) kikd {I‘f(k,x.z) + Fg(k,xz)] (94)

Fl(k,xz) — cosh K(QA—X') [

sinh $ KA 23 ]smk by~ Hhixcos k{Mx, (93]

Iy(kx,) = 1\%5[ - of ]“’*g'gs{;(;ﬁgxz) + kfn)[l -2§]cos k{My,

+ ﬁ,—;‘jsin kgn)x,‘, . (96)




with §(x) the Dirac delta function. To be consistent with the spirit of the model adopted in

this paper, the velocity profile used in performing the integrations that lead to (93) was

U(xy) = 8gXp(1 = x,/A), where sy=r,/v. This gives for the shear

5(x,) = so[l —%xQJ. (97)

However, it is clear that the above formalism is valid for any shear.

Using the spectral functions E(k) derived from the DIA and GISS models. we have
computed the pressure spectral function IT(k) and then integrated over all wavevectors k.
The resulting pressures, in units of pr,, are presented in Figs. (2) and (10). As one can
see, for Rexpz 5000, the calculated value of the pressure a:i the wall is 6.31, while
experiments31 32

and direct numerical simulation yield a lower value, i.e. 3.22. the

discrepancy being due most likely to anisotropy effects (see XI).

X. PROPAGATION OF ELECTROMAGNETIC WAVES IN A TURBULENT
CHANNEL FLOW

An important application of the previous formalis.r is to the case of propagation of a
laser beam through a turbulent channel flov: medium. Of primary importance is, for
example, the evaluation of the degree of attenuation in the beam intensity 1. Using tle
formalism developed by Hogge et al.,33 the total beam intensity I. as a function of the

coordinates x, and y, in the plane perpendicular to the direction of propagation, is given by

AS
(M)

exp(=04) | dx,daydy,dy, exp|C o(0) = g = ip/f {xo(x,=%5) + yo(¥ =¥y}
o ¢ J

I(xou"'o) =

(98)




where

wig = x3 + X3 + yi + ¥3, (99)
p?= (xx”x2)2+(yl"Y2)2 ) (100)
22T

Here. A is the wavelength, f the focal distance, and w, the spot size. In Eq. (98), Co(p) is

the phase autocorrelation function and aé its value at p = 0. By separating the integrand
in (98) so as to exhibit the coherent and incoherent parts of the total intensity, one can
then evaluate the corresponding powers obtained by integrating the intensity over the

variables xy and y,. A simple integration then gives the exact result

D= =1]1- —02 9
: Pinc/PtotaI 1 = exp( U¢) ’ (102)
which is often written as
o2
Pp=—20 (103)
1 + aé

2

since in most cases %% is smaller than unity. The quantity a:-; = ,¢(0) is defined as>

LL
o3 = p? [ % l de- id{" cos k(€€ ')]cos[w(L-f')]cos[w(L—{' )] @k x)

(104)




whe:ze

>’
w

|+

=ki+k}. K=k}+ A (105)

E
I
)
o

the §{’ and £’ integrations are over the the photon optical path of length L. which is
related to the full channel width 2D, x* = (2D/L)¢’, and x’* = (2D/L)€ . One of the
integrations over optical path in (104) can be done by changing variables to sum and
difference coordinates, (£’+€77)/2 and £'—€°“. We then assume that <I>n is a locally
isotropic field, i.e., a function oniy of the sum coordinates, so that the integration over the

difference coordinates can be done analytically.

The function Qn is defined as the spectral function of the square of the refractive
index fluctuations, i.e., for mean flow in the x, direction with the coordinate system
oriented such that x, is the coordinate variable spanning the channel with 0 < Xo A =2D.

we have

<n°%(xy)> = J Pk (kxy) | (106)

where we have taken2>
-— A - _8 -
n=1+n"=1+ap, a=79x10 "gA)/T. (107)

Here the pressure p is measured in c.g.s. units and the temperature T in K. The slight

dependence on the wavelength A is represented by the function g(A), where g(A=1py) = 1.

g(A=0.51) = 1.02, and g(A=0.2x) = 1.18. It then follows that
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2
<pi(x,)>
<n ¥(x,)> = (ap)? ———

- - f @ (kx;) dk . (108)

p

where p is the density in cgs units. Using (71), it follows that
¢ (k.x,) = (apj® Tl(k.x,) . (109)
1)  The quantity paU}

Using the equation of state and the sound speed Cq

kN 7
S o832 % 107

P=” r )

(2]
7S

Il

~2
R

(110)

where k is Boltzmann's constant. N A 15 Avogadro's number, u the molecular weight

{gm/mole), and v the ratio of specific heats, we derive using (107)
paU2 = 1, M2 | (111)

where the constant 7, (p is in c.g.s. units) and the Mach number M are defined as

p—

)'0
T £ 6.5696 72 Mz—. (112)
K S

2)  The results

In Table V, we present the values of 10°P, Eq. (102), calculated using Eqgs. (104).
(109), and (94). The spectral function E(k) is calculated using both the GISS model and
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the DIA. For each entry, R and M. the corresponding Ugy, D {the channel half-width).
exp

X

and L (optical path) can be computed from the following relations (p in atmospheres and p

in ¢.g.s. units)

Uy(cm/sec) = CSM = 103M (7p/p)# (113)
D(cm) = {-}ER“P . L(em) = 2(1 + n2)? Diem), (114)

The values of the viscosity v (in cm? s_l), density p (in gm cm—3), and the refractive index
n_ are given in Table V. A plot of 10°P versus the Mach number is displayed in Fig. (11)

for A =2, 3. and 5 mm.
XI. ANISOTROPY r

As mentioned at the end of Section IX, we believe, on the basis of Kraichnan's

(’
wor]-:,"S

that the reason for the discrepancy between the calculated and measured values of
the pressure fluctuations at the wall is the lack in our calculation of the inclusion of
anisotropy effects induced by the mean flow. This is also believed to be the cause nf the
discrepancy between the calculated and observed one—dimensional cnergy  spectra.
Kraichnan presented a simple model for an elongated eday structure by introducing a
(constant) scale change in the direction of the mean flow. This simple model will be
adopted here in order to judge what qualitative effect anisotropy would have on the
one—dimensional energy spectrum.

§

. , 2 . : .
Following Kraichnan,*® we introduce a transformation of scale defined by
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N=ex. X=X, x3=x, (1152)

for the spatial coordinate variables where 1 is the streamwise direction and 2 is the

direction across the channel, and

ki =

SEa

, k; =k, k3 =k;, (115b)

for the wavenumber variables, where a is a constant scale factor. The primed variables in
(115), i.e., those for which the scales are stretched in the streamwise direction, are the
physical variables. Since we only know E(k) for the isotropic case (in which there is no
stretching). we derive a relationship between the velocity covariance tensors in the primed
and unprimed systems. For homogeneous and isotropic turbulence, the velocity correlation

function ®;j(k) is given by (Ref. 15, Eq. 3.4.12)

®i;(k) = ZE_?(r% [5ij "%‘] , (116)

where é;j is the Kronecker delta, E(k) is the energy spectrum, and

<u’®> = J d3k @;i(k) . (117)

The velocity covariance is a second rank covariant tensor. Applying the coordinate change

(115b) to ®j;(k) yields

®,,(k’) = Na®®, (k) (118)
®,i(k’) = Nad,j(k), j#1 (119)
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®ij(k’) = Noj(k) , Lj#1l, (120)

for the velocity covariance in the k’ coordinate system, where the normalization coefficient
N has been added to these expressions to insure that the mean kinetic energy is identical to
. that of the original fiow. The new correlation tensor now describes a flow for which all
lengths and velocities are elonga.ed by a factor ¢ in the x; direction. To calculate N. note

that the kinetic energy (per unit mass) in the new coordinate system is
;qu(k') @k =4 (2R, + Ry, + Ryy) (121)
where Rji = [ ®ii(k) d®k (no sum on the indices). To insure that the mean kinetic energy

is identical to the original flow, (121) is equated to $(R,; + Ry, + Ry3). For isotropic Rj;.

the resulting equation is solved for N and we find that

N = Ja (

¢ 19 )
o242

—
I
t

~

a) One-Dimensional Spectra
The one—dimensional energy spectrum in the physical coordinate system is given by

E,(k;) = ejd%' (k') , (123)

where k% = kj? + k3% After changing the variable of integration to k-2 = a’k;? + w72
and taking k‘-k in the integral for ease of notation, the result for the one—dimensional

energy spectrum in the physical variables is
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Fig. (12) is a plot of the observed E,(k{) for Rexp=30800 and that calculated using the

- DIA result. (Actually, we plot Far_»(n), see Eq. (64).) The scale factor a is a free

parameter and Fig. (12) displays the results for a = 1, 4, and 8.

This procedure has provided a qualitative improvement over the a = 1 result. The
turnover of the spectrum, originally occurring at n ~ 200 s—l, has moved to frequencies
(i.e., wavenumbers) beyond the lowest observed, in concert with the cbservations.
Naturally, it is not to be expected that the procedure presented here would provide a
perfect fit to the data since the mean flow may not affect all scale lengths in the same way.

However, the results do suggest that accounting for anisotropy considerably improves the

fitting of the one—dimensional spectra.
b)  Pressure Fluctuations

For the anisotropic case, the calculation of the pressure fluctuations is similar to that

done in Section IX. For the amplitude of the pressure fluctuations, we write

2 7
—<-l’—l(,§ﬂ2=Jd3k' (k’ x3) , (125)

o
‘2102
(k' xz) = 43 27 S ks-k{V) Ky Kt g ) [F'f(k’,xé) + rg(k',xé)] (126)
n=-w

sh A-X1 ! A=
Mk x5) = COSlgh(ihg) ﬁ;[ QZ-]Slnk?xQ ~hxcoskyx;  (127)
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2 k’?)sinh K ($A—x3) . & X' o,
Fy(k’,x3) = m[ 1-2 ,2] cosh 4% O +IE;[1 ]cos kix;

+ poixsin kix; (128)

with §(x) the Dirac delta function, kgn) = 2m/A, and k2 = k{2 + k3% In (125)—(128).
the integration variables and position variable have been written as k- and x;, respectively.
in order to emphasize that these are the physical coordinates, i.e., those stretched in the
streamwise direction. Although we only know E(k) in terms of wavenumbers from which
the stretching has been removed, we do know how to relate d>i j(k') to d>i j(k). Now change

variables in the integral from k- to k. Working in the coordinate system defined by
k, = k sin 6 cos ¢, k, = k cos 4, ks =k sin §sin ¢ , (129)

the quantities 52 and k*? are given by

2
k2= K2 sin?f (1~ 251 cosg) = k2(g)sin?0, (130)
2
k2 =1 (1 - %L in% cos?g) = k%g(0,) . (131)

Using d*k = d%k/a, we have from (125)
<p® gxo,ap 1 Jd3k (k.xy0) | (132)

p(

where
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matlA T 1(¢)e2(0.4) k2

@
in20 cos? o k3
N(k,x,:0) = S§N_2n ‘z 5(k2—kgn)) E(k)sin’§ cos?¢ k3

n=—w

x (I3(k’ ,x,) + Lok’ \x,)) (133)

and I'; and T, are given by (127) and (12.). Using (129) to write the delta function on k,
as a delta function on cos 6, the @ integration in (132) can be done. Since the integrand is
symmetric in the summation index n and the n =0 term vanishes, we find for the

amplitude of the pressure fluctuations

n kA ‘)7r]
wisgel> - B 3i [ Jdk-fe% S, - ks
x [Tk’ xp) + T3(k x,)] (131)
where
sin?0 =1 - [12(_5_1]2 (135)

Equation (134) was integrated numerically using the DIA spectrum for a = 4,8 and
the results for Reynolds numbers of 12300, 30800, and 50000 are displayed in Figs. (13) and
(14). Relative to the @ = 1 case, the pressure at the wall is reduced by a factor of
approximately 1/, i.e., with the pressure in units of pUZ,

Dwall(a) = % Pwall{a=1) . (136)
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The pressures at mid—channel have undergone relatively small changes relative to the

isotropic (a = 1) calculation, i.e.,
Pniden(@) ¥ pniden(o=1) . (137)

It seems clear that the inclusion of the effects of anisotropy in the calculation of the
amplitude of the pressure fluctuations has greatly improved our predictions of the wall

pressures.
c) Fraction of Scattered Power, P

We have also applied the above procedure for the modeling of the effects of anisotropy
on the attenuation of a laser beam propagat’ chrough a turbulent channel flow. With the
‘raction of scattered power defined by (103) and (104), we integrated (104) over the
physical variables, using the DIA spectrum and the expressions from above for the
anisotropic pressure function. The scattered fraction P was calculated for channel widths
A =23 and 5 mm at a variety of Mach numbers nd the results are presented in Table
VI and displayed in Fig. (15) along with the expernmental' 'rei?ltﬁgp at these values of A4 =
The errors on the experimental results are roughly t%% | Tlm Mach r;umber \Ib uced in’
Fig. (15) is the Mach number based on the bulk velocity, Um‘ Using the first of (29) and
the second of (30), we find that M, is related to the Mach number M (based on the

midchannel velocity U,) by

My=M|1-—233 | (138)
9.268 R2;4%9

It was found that the model fit the data very well with a = 6 for A = 2 mm, a = 4 for A
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=3 mm, and a = 5 for A = 5 mm. These are the best fit results; however, within the
errors, the data can be adequately fit for & = 5. It was found that over the range 1 < a <

10, the scattered fraction P decreases with a roughly as
P(a) » Pa=1)e~(0"1)/3 (139)
XII. SUMMARY AND CONCLUSIONS

By inspecting our results, it can be concluded that the GISS model and the DIA
provide a reasonable first description of both turbulent bulk properties as well as properties
that depend strongly on the large eddy part of the energy spectrum. Several reservations

and directions for future work have to be discussed.

First, the DIA yields larger values for the wall pressure and fraction of scattere|
power than the GISS model. This behavior can be understood by inspecting, for example.
Eq. (94) which shows that the largest contribution to I1(k), and ultimately to P, comes
from he small k region of the turbulent energy spectrum. As one can see from Fig. 5, at
low wave numbers the GISS E(k) is "skinnier" than the one derived from DIA. This means
that the contribution to I1(k) from the GISS model begins only at, say. kD =15, while in
the DIA case the contribution begins earlier, i.e., at smaller wavenumbers. (The DIA
energy spectrum extends in principle to zero wavenumber, but the integration over the
angles in Eq. 92 and the presence of the delta function in Eq. 94 force the first contribution
to begin at kD = 7.) The physical reason behind the different low k hehavior of the two
spectral functions is known. The DIA model includes backscatter, i.e., energy transferred
from the high k region into the low k region. By contrast, the present version of the GISS
model is a cascade model with no backscatter as yet.  While this limitation had heen
recognized in earlier work,”"19 it had never been evidenced as clearly as in the present
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case, since our earlier works were primarily concerned with the description of turbulent
bulk properties which are relatively insensitive to the small k behavior of the turbulent

spectral function. Work to include backscatter in the GISS model is now in progress.

A second comment concerns the role of shear and the way it has been treated in the
present paper. The work of Tchen” ua> demonstrated that the shear may play two roles.
as a source of energy and as a force interacting with the eddies. While the first role is
always present, the second becomes important only when the shear s is of the same order or
larger than the eddy vorticity in a given wavenumber region. When this is the case, a
resonance takes place which may be more important than the effects of non-linear transfer
among the eddies, represented by the function T(k) in Eq. (2). When this type of
resonance dominates over the other forces, Tchen's model predicts the existence of a k™!
region in the energy spectrum which has indeed been ohserved. Our model does not include
this resonance effect, the shear playing in fact only one role, that of a source of energy
drained from the mean flow. This can clearly be seen by inspecting Egs. (2)—(3) where the
presence of shear is confined entirely to the left hand side of the equation in the rate ns(k).
whose form is given by Eq. (53). It is clearly seen that of the two terms, the first, Im(Q).

Is proportional to the shear, U*(y), while the other term represents a sink due to viscosity'.

A third comment refers to the choice of the growth rate. Orszag and Patera’’
(hereafter referred to as O—P) have pointed out that the adoption of a Poiseuille flow with
a central line velocity Uy (used to construct a Reynolds number which is then identified
with the experimental value), leads to a growth rate that, being viscid in nature is
naturally rather slow. In fact, the fastest instability occurs at around R=48000 and its
maximum value (ns/n.) is only 0.0076. O-P discovered that there is a secondary. three
dimensional instability that, catalyzed by the previous one, grows much faster than the
original instability. The O-P discovery is an important one in many respects. but
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particularly when one is concerned with the problem of the transition between laminarity
and turbulence, since it explains in a natural way (i.e. without free parameters)
experimentally important features that would otherwise be left unexplarned,36 the most
important being the well known fact that linear analysis predicts a breakdown of

laminarity at Rex =3772 while the experimental value is close to Rexp~2500‘ It is much

p
less clear, however, whether the O—P secondary instability and its corresponding growtl
rate is directly relevant to our problem, where we have to deal with one important aspect
that does not enter into the O—P problematics, namely the fact alluded to previously, that
in the construction of ng for our problem we must somehow take into account the
renormalizing effect of the presence of turbulence itself. The physical model that we have
proposed in Section IV can be viewed as a way to renormalize the central line velocity due
to the presence of turbulence. Another important aspect of the physical effect brought
about by the existence of the O—P secondary waves is displayed in Figure 4 of the O-P
paper, where it is shown that the growth rate versus Reynolds number curve reaches a
maximum and then saturates rather than decreasing as it would in the case of a viscid
instability. Two facts must be noticed. The maximum value of the O—P growth rate is
around 0.1, which is the same as we have obtained using our renormalization (see Fig. 3).
Secondly, as it is also clear from Fig. 3, in the region of Reynolds numbers of interest in
this problem, the growth rates have similar maximum values, thus indicating that we are
dealing with a region where the stabilizing effect of decreasing viscosity has not yet taken
place. The numerical similarity between our results and those of O—P constitutes.
however, no guarantee that the O—P mechanism (to generate a growth rate) and our
method are physically equivalent. Since our results for the bulk properties are in general
smaller than the experimental values. it is conceivable that the use of an O—P growth rate
together with a renormalization of some of the physical parameters, could yield hetter
results. Since, however, the solution of the O—P equation, which in turn requires the exact
solution of the Navier-Stokes equations for the 2—dimensional instability, would he a
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non-trivial addition to our problem, we decided in this first paper to adopt the physical
argument discussed above. The use of the O—P growth rate mechanism is presently under

investigation.

. In conclusion, while the use of theoretical models of turbulence has reproduced several
properties of turbulent channel flow, limitations have also appeared. Work to include

backscatter in the GISS model and to understand the role of the secondary instability is

now in progress.
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Table I

Rexp RT Rm I, Iy
10* 500 8735 12.55 9.54
- 2 x 10* 925 17659 21.00 16.15
3 = 10* 1331 26633 29.00 22.20

b)




Table I1

The growth rate ns(k) vs. k from a solution of the Orr—Sommerfeld equation for four values

of the Reynolds number. R . (The unit n. is given by Eq. 52).

exp

R =12,300 R = 28,600 R = 30,800 R = 50,000

exp exp exp exp

kD lOnS/n,. kD 10ns/n,.. kD IOnS/n,. kD IOnS/n,.
8.631 0.125 10.533 0.173 10.700 0.168 12.74 0410

9.081 0.291 11.265 0.414 11.256 0.356 14.51 0.838
9.588 0.447 12.113 0.643 11.886 0.537 16.57 1.19
10.144  0.589 13.053 0.849 12.578 0.709 18.85 1.41
10.739  0.713 14.068 1.025 13.323 0.867 21.33 1.42

11.369  0.813 15.147 1.158 14.112 1.006 24.0 1.08
12.031  0.886 16.285 1.234 14.940 1.123 27.1 0.117
12.721  0.927 17.479 1.254 15.804 1.212

13.441  0.930 18.732 1.183 16.702 1.268
14.189  0.889 20.053 1.003 7.634 1.283

14972  0.796 18.599 1.251

15.794  0.645 19.603 1.160
20.650 0.998
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Table II1

ky as a function of k computed from Eq. (58) for three values of the Reynolds number.

R =12300 R = 30,800 R = 50,000
exp exp exp

! le kyD le kyD le kyD
0.453 8.62 0.425 13.3 0.32 12.7
0.48 9.07 0.485 15.8 0.36 14.5
0.507 9.58 0.505 16.7 0.40 16.6
0.533 10.1 0.525 17.6 0.44 18.8
0.56 10.7 0.545 18.6 0.48 21.3
0.587 11.4 0.565 19.6 0.52 24.0
0.613 12.0 0.585 20.6 0.56 271
0.64 12.7 0.605 21.7

0.625 22.9




GISS
103<u?>

0.920

102<ul>?  1.75

104”(, 6.30
10%¢ 4.70
Ay 0.192

= 12,300

DIA

1.14

1.95

5.43

0.092

EXP

3.6

0.11

Table IV

GISS

1.16

1.96

5.04

7.12

0.15

R

= 30,800

exp

DIA

2.01

7.53

0.051

EXP

3.0

0.095

0.63

R

exp

GISS

4.30

0.141

0.49

=30.00)



Table V

Values of 10°P, Eq. (102),and full channel width A (in mm)

for different Mach and Reynolds numbers.

‘ Ry = 12300

M A GISS DIA

0.1 5.71 6.50 x 1072 1.04 x 1073
0.114 5.00 8.49 x 107 1.36 x 1073
0.190 3.00 2.36 x 1075 3.77 x 1073
0.2 2.86 2.59 x 1075 4.16 x 1073
0.286 2.00 5.30 x 1075 8.48 x 1073
0.3 1.90 5.82 x 1073 9.35 x 107
0.4 1.43 1.04 x 1072 1.66 x 1073
0.5 1.14 1.62 x 1072 2.5 x 1072
0.6 0.952 2.33 x 1072 3.72 x 1072
0.7 0.516 3.23 x 1072 5.07 x 1072
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M

0.1
0.2

- 0.286
0.3
0.4
0.477
0.5

0.6
0.7
0.715

14.3
7.15
5.00
4.77
3.58
3.00
2.86
2.38
2.04
2.00

Rexp = 30800

GIS:

9.04 x 1073
3.56 x 1070

-2

0.144
0.205
0.225
0.324
0.438
0.459

DIA

1.81 x 1072
7.23 x 1072
0.148
0.162
0.289
0.410
0.450
0.649
0.883
0.920




M

0.1
0.2
0.3
0.4
0.465
0.5
0.6
0.7
0.774

Gas properties:

23.2
11.6
7.74
5.81
5.00
4.65
3.87
3.32
3.00
2.00

v = 86x1072 em? sec™), p = 2.071073 gm cm™3

R

exp

50000

GISS

3.33 x 1072
0.133
0.207
0.530
0.714
0.827
1.19
1.59
1.97
4.35

P =2atm, 4 = 28 gm mole” ™.

DIA

9

Optical properties: wavelength A = 0.53 microns, refractive index n, = 1.53.
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Rexp

12,300
30,800
50,000

exp

12,300
30,800
50,000

Table VI

Values of 102P for full channel width

A =23 and 5 mm.

A =2 mm

0.286 0.252 848 x 1079 280 x 1070 7.86 « 1074
0.715 0.638 0.920 0315 889 x 1072
1.16 1.04 5.99 2.25 0.662
A =3 mm
2
M M, 102 P

a=1 a =4 a=8§
0.190 0.168 397 x 107 124 x 1073 349 « 107
0477 0.425 0.410 0.140 395 x 107
0.774 0.694 2.71 1.01 0.295
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A =5 mm

Rexp M Mb 10- P

1=
il
—
=]
il
B=N
R
I
o)

12.300 0.114 0.101 1.36 x 1070 4.47 x 1074 1.6 x 10~%

: 30,800 0.286 0.255 0.148 5.05 x 10—2 142 x 1072

50,000 0.465 0.416 0.987 0.363 0.106
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FIGURE CAPTIONS

Figure 1. The expected general shape of the growth rate ns(k) vs. k. At large

wavenumbers. n (k) tends to —vk2,

Figure 2. The growth rate nS(k) vs. k in units of n,, Eq. (52), as solution of the

Orr—-Sommerfeld equation for F exp™ 12300, 30890, and 50000.

Figure 3. The GISS turbulent energy spectral function F(k), in units of F,, Eq. (59), vs.k
for Rexp= 12300, 30800, and 50000.

Figure 4. A comparison of the GISS and DIA spectral functions for Rex = J0800. (Same

p
units as in Fig. 4)

Figure 5. The energy ¢(k) per unit mass and time, Eq. (7), in units of ¢, Eq. (60), for
several values of Rexp‘ As one may note, the function saturates very rapidly, thus

becoming independent of the wavenumber k.

Figure 6. The turbulent viscosity ”t(k) vs. k, Eq. (8), in units of v., Eq. (61), for several
values of Rexp'
Figure 7. Comparison of the theoretical one—dimensional spectral function, Eq. (63).
vs. ky (full line), with the one measured by Hussain and Reynolds4 for Rewp= 28600,

Uy= 1350 cm sec! and D = 3.18 em.
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Figure 8. Comparison of the theoretical one—dimensional spectral function defined hy Eq.

(64) with the one measured .y Laufer1 corresponding to R__ = 30800. U,=728 ¢
g ex 0

p
sec”? and D = 6.35 cm.

Figure 9. The value of the fluctuating pressure. in units of pU?, computed from Eq. (93).
as a function of distance across the channel of width A=2D. The results are
computed using the GISS model.

Figure 10. Same as Figure 10, but computed using the DIA model.

Figure 11.  The quantity 102P, Eq (102), versus M* for three values of the

channel width A = 2, 3, 5 mm.
Figure 12. Same as Fig. 8, but also for o= 4 and 8.
Figure 13. Same as Fig. (10), but for.a = 4.
Figure 14. Same as Fig. (10), but for a = 8.
Figure 15. The quantity 102P versus the fourth power of the bulk Mach number, M}f (see

text), for three values of channel width A = 2,3, and 5 mm. The best fit value of a is

shown. The experimental data are represented as v for the 5 mm results, x for the 3

mm results, and o for the 2 mm results.
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